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A B S T R A C T   

Emotions are often accompanied by vocalizations whose acoustic features provide information 
about the physiological state of the speaker. Here, we ask if perceiving these affective signals in 
one’s own voice has an impact on one’s own emotional state, and if it is necessary to identify 
these signals as self-originated for the emotional effect to occur. Participants had to deliberate out 
loud about how they would feel in various familiar emotional scenarios, while we covertly 
manipulated their voices in order to make them sound happy or sad. Perceiving the artificial 
affective signals in their own voice altered participants’ judgements about how they would feel in 
these situations. Crucially, this effect disappeared when participants detected the vocal manip-
ulation, either explicitly or implicitly. The original valence of the scenarios also modulated the 
vocal feedback effect. These results highlight the role of the exteroception of self-attributed af-
fective signals in the emergence of emotional feelings.   

1. Introduction 

Emotions are multidimensional states, with both physiological (e.g., increased breathing and heart rate), expressive (e.g., smiles, 
frowns, growls) and subjective components (e.g., happiness, sadness, fear). While this conceptualization of emotions is relatively 
uncontroversial, the order in which each of these components occur within an emotional episode still remains a matter of debate. 
Contrary to the common intuition that bodily changes follow subjective feelings, psychologists have long hypothesized that in fact, 
feelings result from the perception of physiological changes that arise in the body in response to an event (James, 1890; Laird & 
Lacasse, 2014; Schachter & Singer, 1962). As William James famously stated, although “common-sense says, we loose our fortune, are 
sorry and weep, […] the more rational statement is that we feel sorry because we cry” (James, 1890). While they differ in their formalization 
of how afferent bodily signals are integrated by the brain to give rise to conscious emotional experiences, most modern theories of 
emotions still highlight this as an important aspect of emotional experience (Barrett, 2017; Damasio, 2003; LeDoux & Brown, 2017; 
Panksepp, 2007). Yet, although a lot of research has been dedicated to this issue, it has proven difficult to empirically confirm whether 
or not the perception of bodily changes plays a causal role in the emergence of emotional subjective experience. 

The main strategy has been to causally manipulate bodily signals (Critchley & Garfinkel, 2017; Laird & Lacasse, 2014; Schachter & 
Singer, 1962; Strack, Martin, & Stepper, 1988; Wagenmakers et al., 2016). The brain receives bodily signals through two main 
channels: either exteroceptively (tactile, visual or auditory inputs) or interoceptively (cardiac, intestinal or respiratory inputs), and 
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recent evidence suggests that these two types of signals are processed by a shared network supporting bodily self-consciousness (Park 
& Blanke, 2019). Both exteroceptive and interoceptive bodily signals are thought to play a role in emotions (Damasio & Carvalho, 
2013; Laird & Lacasse, 2014), but their contribution to the emergence of feelings has essentially been investigated in separate lines of 
research. 

A first line of research focused on exteroception, and essentially on the perception of bodily feedback related to facial expressions. 
Influential studies focusing on proprioception initially provided evidence that modifying agents’ facial configuration (e.g., artificially 
inducing a smile) changes their emotional experience (Laird & Lacasse, 2014; Strack et al., 1988). However, this approach has proven 
to be quite unreliable, with a recent paper reporting a failure to replicate this effect in a large number of independent laboratories 
(Wagenmakers et al., 2016). Arguably, the evanescence of the facial feedback effect might be due to the fact that participants are often 
aware of the manipulation. For instance, recent research showed that being observed, or not, has an impact on the effect (Noah, Schul, 
& Mayo, 2018). This type of finding is consistent with the idea that self-attribution (i.e., identifying signals as genuinely originating 
from the self) is a necessary condition for bodily signals to impact emotional experience, an issue to which we come back below. 

A second line of research focused on interoception, showing for instance that the cardiac cycle impacts emotional judgements about 
facial expressions of fear (Critchley & Garfinkel, 2017), and that receiving false feedback of increased heart rate enhances the 
perceived emotional intensity of neutral faces (Gray, Harrison, Wiens, & Critchley, 2007). By focusing on the perception of external 
stimuli, rather than on emotional experience per se, this line of research has established a causal impact of interoceptive feedback on 
the evaluation of social stimuli. However, it remains unclear whether this is accompanied by substantial changes in subjective 
emotional experience. 

Perhaps more importantly, when using manipulation to study the feedback effects of interoceptive and proprioceptive signals, it is 
difficult to conceal the true nature of the experiment. For example, if you ask participants to hold a pencil in their mouths while rating 
cartoons, the artificiality of the forced smile may lead at least some participants to determine the purpose of the prop. This is especially 
critical if, as suggested above, self-attribution is an important prerequisite for bodily signals to genuinely impact emotional feelings. 

Consistent with this idea, a third line of research has focused on physiological arousal, and relied on injections of adrenaline or 
placebos to probe the impact of self-attributions of physiological changes on the intensity of emotional experience (Laird & Lacasse, 
2014; Schachter & Singer, 1962). For instance, a classic study suggested that in the absence of information about the effects of 
adrenalin injections, participants are more likely to incorporate these physiological effects and show strong emotional reactions, 
compared to when they are informed about the effects of adrenalin (Schachter & Singer, 1962). This suggests that perceiving phys-
iological signs of arousal leads to different emotional effects depending on whether they are perceived as originating from the self, or 
from an external cause. Yet, it remains unclear at what level of consciousness such distinction occurs. Do bodily changes have to be 
consciously perceived as externally-originated to break the effect, or is it sufficient that they are implicitly processed as external, even 
if participants have no conscious awareness of being manipulated? 

Here, we ask whether the self-attribution of affective bodily signals is a necessary condition for them to causally impact subjective 
emotional experience. To overcome the limitations listed above, we test this hypothesis by focusing on the voice, thereby returning to 
James’ initial formulation that “we feel sorry because we cry” and not the other way around. Like proprioceptive and interoceptive 
signals, the voice is deeply modified during emotional episodes, and reflects physiological changes that happen within the body. For 
instance, happy voices tend to have more energy in high frequencies due to the labial spreading associated with smiling (Ponsot, Arias, 
& Aucouturier, 2018). Similarly, during states of high arousal, increased muscle tension can cause an increase in subglottal air pressure 
leading to the production of rough vocalizations (Fitch, Neubauer, & Herzel, 2002). Such affective signals are often assumed to pri-
marily serve a communicative function (Dezecache, Mercier, & Scott-Phillips, 2013; Fitch et al., 2002; Scherer, 2003), but here we 
hypothesize that these displays, like other types of bodily signals which can be perceived via proprioception and interoception, also 
play a role in the emergence of the signaler’s own emotional experience. 

It was recently discovered that vocal signals can be captured and progressively altered without speakers necessarily noticing the 
manipulation (Aucouturier et al., 2016). This leads to a situation in which artificial affective signals (e.g., an up-ward shift and boost in 
high frequencies mimicking a happy voice) can be introduced in the voice of a speaker and, at least in some circumstances, perceived as 
self-originated. In this original study, participants’ self-reports revealed that being exposed to artificial affective signals in their own 
voice altered their mood in directions that were congruent with the manipulation (i.e., perceiving happy vocal signals induced more 
positive reports in the speaker). However, because it featured a very low rate of manipulation detection (14%), this study did not allow 
to conclude whether the emotional effect is limited to cases where the manipulated vocal signals are perceived as self-generated. 

The ability to distinguish self-produced actions from external events (i.e., self-monitoring) is thought to rely on internal forward 
models, that allow comparing the perceptual consequences of planned actions against the perceptual feedback stemming from these 
planned actions (Wolpert & Ghahramani, 2000). Consistent with these models, empirical research has shown that hearing self- 
produced speech leads to attenuated responses in the auditory cortex compared to externally generated speech (Chang, Niziolek, 
Knight, Nagarajan, & Houde, 2013). In addition, research relying on speech perturbation has shown that when discrepancies arise (e. 
g., when the fundamental frequency of the vocal feedback is altered), a neural error signal is generated (Chang et al., 2013; Tian & 
Poeppel, 2015) which, behaviorally, may lead to an acoustic compensation of the change (Hafke, 2008; Jones & Munhall, 2000). This 
compensation is thought to reflect the detection of an error in the speech production process (Chang et al., 2013; Jones & Munhall, 
2000; Max, Wauacet, & Vincene, 2003). 

Following these models, we could therefore take the presence of acoustic compensation during emotional vocal feedback as evi-
dence of implicitly detecting that the vocal signal is not self-generated, which allows us to ask whether such detection leads to a 
dismissal of the affective signals it contains. 

As mentioned above, the original emotional vocal feedback procedure featured both very low rates of explicit detection, and no 
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evidence of acoustic compensation (Aucouturier et al., 2016). Here, we rely on a more demanding procedure, involving frequent 
reversals of the vocal feedback manipulation in a within-participant paradigm. This new procedure induces a greater rate of explicit 
and implicit detections of the experimental manipulation, and notably allows us to detect possible acoustic compensation at the level of 
the participant. Using this new procedure, we asked participants to deliberate out loud about how they would feel in familiar scenarios 
that systematically varied in valence and arousal (e.g., receiving good or bad news). While the participants spoke, we covertly 
manipulated subtle acoustic features (fundamental frequency and timbre) in their voices in order to introduce affective signals 
typically associated with happiness or sadness (Fig. 1). We predicted that covert manipulation of affective signals in their own voice 
should impact participants’ emotional experience in the congruent direction (e.g., happy signals should induce positive feelings). 
Additionally, we predicted that this effect should disappear when speakers detected our manipulation, either explicitly (as assessed by 
progressive questions during debriefing) or implicitly (as evidenced through vocal compensation). 

2. Materials and methods 

2.1. Experimental design 

In order to assess the impact of self-attributed vocal affective signals on emotional experience, participants read 36 emotional 
scenarios out loud, and then deliberated out loud about how they think they would feel in this situation. After reading and describing 
how they would feel (which took on average 79 s ± 42 SD), participants had to summarize their assumed emotional state using: 1) a 
continuous valence scale ranging from “very negative” (0) to “very positive” (100); 2) a continuous arousal scale ranging from “not 
aroused” (0) at all to “very aroused” (100), and 3) to report how sure they were that they would feel this way on a continuous con-
fidence scale ranging from “not confident at all” (0) to “very confident” (100). While they spoke, participants’ voices were covertly 
manipulated to make them sound happy (i.e., higher fundamental frequency, and boost in high-medium frequencies mimicking the 
acoustic consequences of smiling, Ponsot, Arias, & Aucouturier, 2018) in 1/3 of the trials, sad (i.e., lower fundamental frequency, 
darker spectrum) in 1/3 of the trials, or remained unchanged (i.e., neutral condition) in the remaining 1/3 of the trials. The covert 
manipulation started as soon as participants began reading the scenario out loud, and increased progressively with a ramp of 2.5 s to 
reach pre-defined values for each acoustic manipulation (fundamental frequency and vocal timbre). The manipulation stayed on while 
the participants discussed out loud how they think they would feel in the scenario. 

Fig. 1. Experimental paradigm. Participants read vignettes depicting familiar emotional scenarios, and then deliberated out loud about how they 
would feel in these situations. They then summarized their emotional state on a valence scale, an arousal scale and a confidence scale. While they 
spoke, their voice was covertly manipulated to make it sound happy (i.e., higher fundamental frequency, brighter spectrum) or sad (i.e., lower 
fundamental frequency, darker spectrum), or remained unchanged (i.e., neutral). 
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Participants were fitted with closed headsets minimizing the contamination from environmental noise and their non-manipulated 
voice (Beyerdynamics – DT770), and their voice was recorded with a DPA 4088 headset and an RME UCX Fireface sound card, that 
allows for a roundtrip latency under 20 ms. An Apple MacBook Pro running PsychoPy (Peirce, 2007) was used to control stimulus 
presentation, recording responses, as well as communicate in real time with the voice transformation software (DAVID) to apply the 
various voice transformations depending on experimental conditions. Participants were asked to read each of the scenarios out loud, 
before speaking freely to describe how they would feel in such a situation. To conceal the true nature of the experiment, participants 
were told that the experiment aimed at uncovering why and how emotional feelings arise in various imaginary situations. 

In a previous study using a between-subject design (i.e., each participant heard her/his voice manipulated in only one direction), 
and a very slow introduction of the vocal-feedback manipulation, we found both that most participants did not detect that their voice 
had been manipulated, and that none of the participants displayed acoustic compensation (Aucouturier et al., 2016). In the present 
experiment, we used a design that we deemed likely to result in a higher detection rate, either explicitly or as indexed through acoustic 
compensation. This time, we used a within-subject design, in which the direction of the vocal-feedback manipulation was changed 
after every 4 trials, resulting in 9 blocks of 4 happy, sad or neutral trials. Thus, there were 3 non-consecutive blocks of 4 trials for each of 
the vocal feedback manipulation (hereafter VFM) conditions (12 trials with the happy VFM, 12 with the sad VFM, and 12 neutral trials). 
Pilot testing revealed that in this within-subject design, the percentage of participants who detected the manipulation increased as 
opposed to a between-subject design where only one effect was slowly applied to each participants’ voice (Aucouturier et al., 2016). 
Vocal feedback manipulation, block order and scenarios were pseudo-randomized across participants, such that across groups of 18 
participants, each scenario appeared in the happy, sad or neutral condition for 1/3 of the participants. 

Following the experiment, participants were debriefed with progressive questions, in order to assess whether they detected the 
vocal feedback manipulation or not. Depending on their responses, they were given a score of detection ranging from 1 to 6 by the 
experimenter (1 = “you intentionally manipulated my voice”; 2 = “my voice was higher / lower sometimes, and it changed during the 
experiment”; 3 = “my voice sounded strange sometimes, and it changed during the experiment”; 4 = “my voice sounded strange, and it was not 
only because I am not used to hearing myself through headphones”; 5 = “my voice sounded strange, but it is probably because I am not used to 
hearing myself through headphones” ; 6 = “my voice was absolutely fine”). At this stage, the experimenter remained blind to the par-
ticipant’s behavior during the experiment (i.e., did not hear the participant’s responses during the experiment, did not know whether 
the participant compensated acoustically or not, and did not know whether they displayed the emotional effect or not). Participants 
also filled in a questionnaire in order to assess their level of alexithymia (TAS scale, Zimmermann, Quartier, Bernard, Salamin, & 
Maggiori, 2007) as well as social anhedonia (SHAPS scale, Gaillard, Gourion, & Llorca, 2013). At the end of the experiment, they were 
debriefed and informed of the true purpose of the study. 

2.2. Participants 

Sample size was chosen following pilot testing, which suggested that approximately one third of the participants detected the 
manipulation explicitly, one third implicitly, and one third showed no detection at all. Given our design which required forming groups 
of 18 participants (see experimental design above), we thus aimed to test fifty-four participants. In total, fifty-five participants were 
tested, but seven participants had to be excluded due to technical problems with recording, or real-time vocal transformations (i.e., 
failure of the software, or communication between the software and the experimental interface coded in python), leaving N = 48 
participants in the final sample (29 females; age = 23 ± 3.24 SD). 

2.3. Stimuli 

36 emotional scenarios were adapted and translated into French from (Wilson-Mendenhall, Barrett, & Barsalou, 2013). These 
scenarios were originally designed to describe familiar situations able to induce varying experience of valence and arousal in par-
ticipants. We selected 9 scenarios per valence (positive/negative) and arousal (high/low arousal) quadrants, based on the normative 
ratings provided by Wilson-Mendenhall et al., (2013) (see supplementary material for four examples of scenarios). We verified in an 
independent group of 10 participants with equivalent demographic background as our main sample (4 females, age = 28.5 ± 4.48 SD) 
that the stimuli were perceived similarly in our population (mean valence ratings for positive scenarios on a scale from 0 to 100: M =
69.7 ± 9 SD, negative scenarios: M = 40.2 ± 9.3 SD; arousal ratings for high arousal scenarios on a scale from 0 to 100: M = 60.3 ± 19 
SD; low arousal scenarios: M = 48.5 ± 11.1 SD). 

2.4. Voice transformation 

Subtle affective signals were artificially introduced in participants’ speech in real time using the voice transformation technique 
introduced in Rachman et al. (2018). The software, called DAVID, uses a selection of digital audio effects such as fundamental fre-
quency shifting and spectral filtering to simulate emotional expression in running speech, with a very-low latency compatible with 
real-time vocal production. For the happy Vocal Feedback Manipulation (VFM), we applied a positive fundamental frequency shift 
(+50 cents) as well as a spectral modification aiming to simulate the impact of smiling (notch filter at 2880 Hz, gain = 3, Q = 0.74) 
(Ponsot et al., 2018). For the sad VFM, we applied a negative fundamental frequency shift (− 70 cents) as well as a spectral modification 
aiming to attenuate the power in high frequencies, resulting in a darker sound (high-shelf filter, 8000 Hz, gain = 0.25, Q = 1) 
(Aucouturier et al., 2016; Scherer, 2003). For the neutral condition, the voice was routed through the same algorithm so that the 
latency (20 ms) and processing of the voice was the same as in the VFM conditions, except that no transformation was applied. 
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2.5. Pre-processing and statistical analysis 

For each trial and each participant, we used the Praat software (Boersma, 2001) to compute the fundamental frequency from two 
different recordings of the participant’s voice: the non-modified recording (i.e., the natural voice produced by the participant, which is 
the input of the voice transformation algorithm) and the modified recording (i.e., the artificial voice heard by the participant, which is 
the output of the voice transformation algorithm). This analysis revealed that, although generally effective, our fundamental frequency 
transposition algorithm sometimes failed because of the low vocal or audio quality in certain trials (e.g., because the position of the 
microphone was not adequate). Thus, we excluded trials for which the difference between the fundamental frequency of the modified 
and non-modified voice did not show the intended transposition (e.g., for the sad condition, we excluded trials if the fundamental 
frequency of the modified voice was not lower than the fundamental frequency of the non-modified voice). This pre-processing lead to 
excluding 7% of the data. 

Trials in the neutral VFM condition were then used as a baseline to assess the impact of the happy and sad VFM on ratings. For each 
participant, ratings were normalized with respect to the participant’s neutral trials, following this formula: zX = (X – m_neutral)/ 
sd_neutral, were zX corresponds to normalized ratings (valence, arousal or confidence), X to data samples, m_neutral to the average and 
sd_neutral to the standard deviation of the ratings given by this participant in neutral trials. Over all participants, the average neutral 
ratings were: valence: 52.95 ± 7.47 SD; arousal: 52.01 ± 8.13 SD; confidence: 79.42 ± 13.05 SD. 

Explicit detection was assessed from participants’ responses during the debriefing: participants who detected that their voice had 
been manipulated (i.e., detection scores <= 4) constituted the group of explicit detectors, and participants who did not detect the 
manipulation at all (scores > 4) constituted the group of non-detectors (see Table 1). 

Implicit detection was estimated for each participant by assessing whether the fundamental frequency of their non-modified voice 
deviated from its normal range in each of the two VFM conditions (happy and sad). We assessed acoustic compensation at the level of 
the participant (i.e. globally, over all trials of the participant) by testing whether the fundamental frequency extracted from the non- 
modified recordings in each of the VFM condition (happy / sad) differed from the normal range of variation in the participant’s 
fundamental frequency, measured across all conditions. The fundamental frequency of the non-modified recordings of each participant 
was normalized (z-scored) over all trials of all three conditions of the participant. The z-scored values for the happy and sad trials of the 
participant were then tested against zero, with two separate one-sample t-tests, to assess their deviation from the participant’s normal 
range. A significance threshold of <0.1 was adopted in order to avoid missing implicit detection through lack of power at the indi-
vidual level. Similar results were obtained when using a threshold of p < 0.05 to classify individual participants, and also when 
normalizing with respect to neutral trials only. 

This analysis revealed that 50% (N = 24; 16 explicit non-detectors) of the participants did not show any acoustic compensation; 
16.7% (N = 8; 5 non-detectors) compensated in the happy condition (i.e., produced a lower fundamental frequency when their voice 
had been transposed upwards); 22.9% (N = 11; 7 non-detectors) compensated in the sad condition (i.e., produced a higher funda-
mental frequency when their voice had been transposed downward); 2% (N = 1 non-detector) compensated in both directions; un-
expectedly, 8.3% (N = 4; 2 non-detectors) of the participants displayed anti-compensation in the happy condition (i.e. their voice had a 
higher than average fundamental frequency in the happy trials). 

For each individual participant and condition, we classified all trials of a condition as “compensated” if the participant compen-
sated in that condition (conservatively, the anti-compensations observed in the happy condition were also counted as compensation). 
This resulted in 188 trials (96 for happy, 92 for sad) in the compensated condition, and 506 trials (276 for happy, 230 for sad) in the non- 
compensated condition. Fig. S1 shows an analysis of the fundamental frequency of the non-modified voices for compensated versus 
non-compensated trials, which confirmed that this classification efficiently separated trials with substantial acoustic compensation 
from trials without acoustic compensation at the level of the group. 

Because of the unbalanced numbers of detectors vs. non-detectors, and compensated vs. non-compensated trials, we used hier-
archical linear mixed regressions to assess the statistical significance of our results. Hierarchical linear models were fit with the 
maximum likelihood method. Normalized valence ratings, confidence ratings, arousal ratings, the non-modified (pre-VFM) and the 
modified (post-FVM) fundamental frequency served as dependent variables in separate models. Participant and sentence number were 
entered as random factors. Fixed factors were the VFM condition (happy vs. sad vs. neutral), the explicit detection condition (detector vs. 
non-detector as between-participant factor, determined as described above), the detection level (using each of the six levels of the 
detection scale), or acoustic compensation (compensated vs. not-compensated trials, as described above). We report beta estimates, 
standard errors, t-values (with Satterthwaite approximations to degrees of freedom), p-values and chi-squares for hierarchical nested 
model comparisons with likelihood ratio tests (Gelman & Hill, 2007) with the lme4 and lmerTest packages in R (Kuznetsova et al., 

Table 1 
Explicit Detection results.  

Detection level Description Number of participants 

1 you intentionally manipulated my voice 2 
2 my voice was higher / lower sometimes, and it changed during the experiment 14 
3 my voice sounded strange sometimes, and it changed during the experiment 0 
4 my voice sounded strange, and it was not only because I am not used to hearing myself through headphones 1 
5 my voice sounded strange, but it is probably because I am not used to hearing myself through headphones 8 
6 my voice was absolutely fine 23  
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2014). 

3. Results 

3.1. Impact of participants’ felt emotions on the fundamental frequency of their voice 

Before assessing the impact of the Vocal Feedback Manipulation (hereafter VFM) on participants’ emotions, we first examined how 
the fundamental frequency of participants’ non-modified voices varied with their emotional reports in the non-manipulated trials (i.e., 
the neutral condition). This procedure allowed us to check that we could replicate previous findings concerning the relationship be-
tween the fundamental frequency of speakers’ voices, and their self-reported valence and arousal (Aucouturier et al., 2016; Scherer, 
2003). More importantly, it also allowed us to examine the relationship between fundamental frequency and confidence in emotional 
judgements. Previous research has documented that epistemic uncertainty (i.e., doubting about one’s own state of knowledge) is 
typically associated with a rising intonation and reduced volume (Goupil & Aucouturier, n.d.; Jiang & Pell, 2017), but the acoustic 
correlates of emotional uncertainty (i.e., doubting about one’s own emotional state) remain unclear so far. 

The fundamental frequency of participants’ voices in neutral trials was averaged separately depending on whether participants 
reported feeling a negative or positive emotion (median split of valence ratings, see Fig. 2A), high or low arousal (Fig. 2B) and high or 
low confidence (Fig. 2C). Trials in which participants reported negative emotions were accompanied by lower fundamental frequency 
than trials in which they reported positive emotions (t(47) = 2.17, p = 0.035, d = 0.44). Similarly, trials with low confidence on the 
reported emotion had lower fundamental frequency than trials with high confidence (t(46) = 2.8, p = 0.007, d = 0.51). However, 
arousal only marginally impacted fundamental frequency, with low arousal corresponding to a lower fundamental frequency than high 
arousal (t(47) = 1.96, p = 0.056, d = 0.37). 

3.2. Impact of the vocal feedback manipulations on participants’ felt emotions – whole group 

Next, we turned to our main research question, and examined whether the VFM had a main effect on the valence, arousal and 
confidence ratings provided by the participants, and whether this effect was congruent with the relationship between participants’ felt 
emotions and the fundamental frequency of their voice reported above. Over the whole group of participants (detectors and non- 
detectors, compensators and non-compensators), a repeated measure multi-variate analysis of variance (rm-MANOVA) revealed a 
significant effect of the VFM condition (happy / neutral / sad) on our three main measures of valence, arousal and confidence ratings (F 
(2,94) = 2.89, Pillai’s trace = 0.17, p = 0.01). This first analysis at the level of the whole group of participants, and over the three 
dimensions of emotional feelings explored in this study, is compatible with our first hypothesis that VFM should impact emotional 
feelings. 

Fig. 2. Impact of felt emotions on the voice. Fundamental frequency of the voices in neutral (i.e., non-modified) trials depending on whether 
participants reported feeling A) a negative or positive emotion (median split); B) high or low arousal and C) high or low confidence (right panel). 
Error bars show 95% confidence intervals, and black asterisks the significance of paired t-tests comparisons with: . p < 0.1; * p < 0.05; ** p < 0.01. 
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3.3. Impact of explicit detection on the vocal feedback emotional effect 

We assessed explicit detection through a progressive debriefing at the end of the experiment (see methods for details). As can be 
seen in Table 1, out of the 48 participants, 31 (65%) did not detect the manipulation explicitly (i.e., detection score of 6 “my voice was 
absolutely fine”: N = 23 ; or 5 “my voice sounded strange, but it is probably because I am not used to hearing myself through headphones”: N =
8), and 17 (35%) participants detected that their voice had been manipulated (i.e., detection score of 4 “my voice sounded strange, and it 
was not only because I am not used to hearing myself through headphones”: N = 1; 2 “my voice was higher / lower sometimes, and it changed 
during the experiment”: N = 14; or 1 “you intentionally manipulated my voice”: N = 2). Of note, 23 participants reported that “their voice 
was absolutely fine”, even though they were given the opportunity to respond “my voice sounded strange, but it is probably because I am not 
used to hearing myself through headphones”, an option chosen by a comparatively low number of participants (N = 8). This indicates that 
roughly half or the participants had no problems with self-identifying their voice in this experiment, despite the fact that it was heard 
through headphones, which necessarily transforms the vocal feedback they normally hear through the combination of air and bone 
conduction (Pörschmann, 2000). 

Crucially, and consistent with our second hypothesis, the main effect of the VFM on valence, confidence and arousal reports was 
driven by the 31 participants that did not explicitly detect the vocal feedback manipulation (see Fig. 3). The interaction between 
explicit detection (yes/no) and the VFM condition (happy/neutral/sad) was tested on our three measures separately (valence, confi-
dence and arousal normalized ratings), in hierarchical linear mixed regressions analyses including participant number and sentence 
number as random factors. 

For valence ratings, there was no main effect of the VFM condition (X2 = 1.47, p = 0.48), but an interaction between the VFM and 
explicit detection (X2 = 7.3, p = 0.026, see Fig. 3A). This interaction reflected the fact that in the group of non-detectors, the happy 
VFM significantly increased valence ratings compared to the baseline (i.e., neutral) condition (M = 0.16 ± 0.3 SD; 95% CI [0.04, 0.27]; 
beta = 0.15 ± 0.06 se, t = 2.5, p = 0.014, d = 0.51), and marginally so compared to the sad condition (M = − 0.02 ± 0.35 SD; 95% CI 
[− 0.15, 0.1]; beta = 0.11 ± 0.06 se, t = 1.8, p = 0.07, d = 0.56, the difference between the sad VFM and the neutral condition was not 
significant, beta = − 0.04 ± 0.06 se, t = 0.58, p = 0.56, d = 0.07). In the group of detectors, none of these comparisons were significant 
(all p-values > 0.14 and d < 0.3). In addition, valence ratings in the happy condition were higher in the group of non-detectors than in 
the group of detectors (beta = 0.27, se = 0.08, t = 3.2, p = 0.002, d = 0.83). The direction of the effect is consistent with the fact that 
speakers displayed higher fundamental frequency when they reported feeling positive rather than negative emotions (see Fig. 2A, for 
the whole group of participants). As can be seen in Fig. 3B, the interaction between the impact of the VFM on valence ratings and 
explicit detection was also observable when examining detection as a continuous variable: there was a significant interaction between 
the VFM and detection level (from 1: highest detection to 6: lowest level of detection; X2 = 6.42, p = 0.04). The difference between the 
happy condition and the neutral condition increased with detection level (beta = 0.07, se = 0.03, t = 2.5, p = 0.012), but this effect was 
not significant for the sad condition (beta = 0.026, se = 0.027, t = 0.96, p = 0.33). 

Regarding confidence, there was a significant effect of the VFM (X2 = 8.52, p = 0.014, see Fig. 3C) and no significant interaction 
between the VFM and explicit detection (X2 = 1.07, p = 0.58). The sad VFM significantly decreased confidence ratings (M = − 0.27 ±
0.73 SD; 95% CI [− 0.54, − 0.001]) compared to both neutral (beta = − 0.3 ± 0.1 se, t = − 2.8, p = 0.005, d = 0.37) and happy VFM 
conditions (M = − 0.06 ± 0.7 SD; 95% CI [− 0.32, 0.20], beta = − 0.25 ± 0. 11 se, t = − 2.28, p = 0.02, d = 0.3) in the group of explicit 

Fig. 3. Main results depending on Explicit Detection. (A) Valence ratings (z-scored) depending on the vocal-feedback manipulation (VFM; happy: 
green, sad: blue) and explicit detection. Ratings were normalized with respect to neutral trials, so the neutral condition is not shown in the Figure (i. 
e., normalized ratings in the neutral condition were equal to zero). (B) Difference between valence ratings in the happy minus sad condition as a 
function of the level of detection. Dots show individual data. We show the best fitting regression line with 95% confidence intervals. (C) Confidence 
ratings (normalized with respect to neutral trials) depending on the VFM and explicit detection. (D) Arousal ratings (normalized with respect to 
neutral trials) depending on the VFM and explicit detection. Error bars represent 95% confidence intervals. White asterisks represent significance of 
the model comparisons between experimental conditions (happy and sad VFM) and the baseline condition (neutral), black asterisks represent sig-
nificance of the model comparisons between the two experimental conditions within groups, and grey asterisks represent significance of the model 
comparisons between the two experimental conditions between groups. The bracketed black asterisk represents the paired comparison between all 
manipulated trials (sad and happy) versus the neutral, non-manipulated (i.e., baseline) condition. * represents p < 0.05, ** p < 0.01, *** p < 0.001. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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non-detectors. In the group of explicit detectors, none of the comparisons were significant (all p-values > 0.39 and d < 0.13; all other 
comparisons were non-significant). Again, the direction of the effect was consistent with the fact that participants spoke with a lower 
fundamental frequency when they reported lower confidence (see Fig. 2C, for the whole group of participants). 

Regarding arousal, there was a main effect of the VFM (X2 = 7.9, p = 0.019) and no interaction between the VFM and explicit 
detection (X2 = 0.25, p = 0.9). As can be seen in Fig. 3D, there was a non-specific effect of the vocal feedback manipulation where both 
the sad (M = 0.11 ± 0.5 SD; 95% CI [0, 0.25]; beta = 0.13 ± 0. 07 se, t = 1.88, p = 0.059, d = 0.22) and the happy VFM (M = 0.12 ± 0.4 
SD; 95% CI [0, 0.23]; beta = 0.16 ± 0. 07 se, t = 2.2, p = 0.027, d = 0.3) increased arousal ratings compared to neutral trial), with no 
difference between the happy and the sad conditions (beta = 0.03 ± 0. 07 se, t = 0.4, p = 0.69, d = 0.15). Thus, regardless of the specific 
manipulation, manipulated trials led to higher arousal ratings. We come back to this aspect in the discussion. 

In sum, explicit detection of the vocal feedback manipulation generally removed its impact on emotional self-reports for valence 
and confidence, which were also the two emotional dimensions that were more tightly associated with changes in the fundamental 
frequency of participants voices in non-modified trials. This finding suggests that affective vocal signals have to be perceived as self- 
originated in order to directly influence feelings. To further examine this hypothesis, we then turned to our marker of ‘implicit’ error 
detection in speech production, by examining acoustic compensation in the subgroup of 31 (explicit) non-detectors. 

3.4. Implicit detection of the VFM indexed by acoustic compensation 

At the level of the group, we observed substantial acoustic compensation, with a significant main effect of the VFM on the 
fundamental frequency of the voice produced in manipulated trials (X2 = 44, p < 0.001) and no significant interaction between the 
VFM and explicit detection (X2 = 4.2, p = 0.12). To document the specific aspect of implicit detection, over and beyond explicit 
detection, we now focus on non-detectors only (see Fig. S1A for details in the group of explicit detectors). As can be seen in Fig. S1A, the 
happy VFM lead the non-detectors to lower their voice compared to neutral trials (M = − 0.20 ± 0.36; 95% CI [− 0.36, -0.001]; beta =
0.18 ± 0.07 se, t = 2.6, p = 0.009, d = 0.57), while the sad VFM lead them to raise their voice (M = 0.27 ± 0.45; 95% CI [0.1, 0.44]; 
beta = − 0.29 ± 0.073 se, t = 3.96, p < 0.001, d = 0.6). At the individual level, we found that out of the 31 participants who failed to 
explicitly detect the VFM, 15 of them (31% of the total sample of N = 48) showed substantial acoustic compensation for one or both of 
the VFM conditions (i.e., the fundamental frequency of their voice deviated from their usual range when the happy or sad VFM was 
applied, see methods for details). For each participant, trials in a given condition were classified into two “implicit detection” con-
ditions: compensated if the participant showed substantial acoustic compensation for that condition over the whole experiment, and 
non-compensated if the participant did not show acoustic compensation for that condition over the whole experiment. 

3.5. Impact of implicit detection on the vocal feedback emotional effect 

To assess whether implicit detection impacted the effect of the VFM, we ran hierarchical linear mixed regressions on our three 
measures separately (valence/confidence/arousal normalized ratings) with the VFM condition (happy/neutral/sad) and acoustic 
compensation (yes/no) as fixed factors, and participant number and sentence number as random factors. 

Regarding valence ratings (Fig. 4A; also see Fig. S2A for histograms allowing to visualize the distribution of the data), there was a 
marginal effect of the VFM condition (X2 = 5.17, p = 0.075), no main effect of compensation (X2 = 2.47, p = 0.11) and an interaction 
between compensation and the VFM (X2 = 6, p = 0.047) reflecting the fact that the impact of the VFM on valence ratings was limited to 
non-compensated trials. In non-compensated trials, there was a significant increase in valence ratings in the happy VFM condition (M =

Fig. 4. Main results depending on acoustic compensation (i.e. implicit detection) in the group of explicit non-detectors. (A) Normalized valence 
ratings, (B) normalized confidence ratings, (C) normalized arousal ratings and (D) fundamental frequency of the modified voice (i.e. output of the 
VFM) depending on condition (happy vs. sad) and implicit detection (i.e., acoustic compensation). Ratings were normalized with respect to neutral 
trials, so the neutral condition (that is therefore equal to zero) is not shown. Error bars represent confidence intervals. White asterisks represent 
significance of the model comparisons between experimental conditions (happy and sad VFM) and the baseline condition (neutral), black asterisks 
represent significance of the model comparisons between the two experimental conditions. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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0.25 ± 0.27 SD) compared to both neutral (beta = 0.25 ± 0.094 se, t = 2.6, p = 0.009, d = 0.93) and sad trials (M = − 0.04 ± 0.37 SD, 
beta = 0.22 ± 0.089 se, t = 2.53, p = 0.012, d = 0.92). Ratings in the sad condition did not significantly differ from the neutral 
condition (beta = − 0.02 ± 0.1 se, t = − 0.2, p = 0.83, d = 0.12). By contrast, none of these comparisons were significant in compensated 
trials (happy M = − 0.1 ± 0.26 SD, vs. neutral: beta = − 0.1 ± 0.12 se, t = − 0.8, p = 0.43, d = 0.38; happy vs. sad M = 0.04 ± 0.26 SD, 
beta = − 0.135 ± 0.15 se, t = − 0.93, p = 0.35, d = 0.58; sad vs. neutral: beta = 0.03 ± 0.13 se, t = − 0.27, p = 0.8, d = 0.15). 

Similarly, for confidence ratings there was a significant effect of the VFM (X2 = 10.17, p = 0.006), no main effect of acoustic 
compensation (X2 = 0.15, p = 0.7), and an interaction between compensation and the VFM (X2 = 5.94, p = 0.05), reflecting the fact 
that compensation also abolished the impact of the VFM on confidence ratings (see Fig. 4B and Fig. S2B for histograms). In non- 
compensated trials, there was a significant decrease in confidence ratings in the sad VFM condition (M = − 0.33 ± 0.82 SD) compared to 
both neutral (beta = − 0.36 ± 0.14 se, t = − 2.6, p = 0.009, d = 0.4) and happy trials (M = 0.04 ± 0.54 SD, beta = − 0.43 ± 0.13 se, t =
− 3.4, p < 0.001, d = 0.54). Ratings in the happy condition did not significantly differ from the neutral condition (beta = 0.07 ± 0.13 se, 
t = 0.52, p = 0.6, d = 0.07) trials. None of these comparisons were significant in compensated trials (happy M = − 0.34 ± 0.97 vs. neutral: 
beta = − 0.34 ± 0.18 se, t = − 1.9, p = 0.054, d = 0.35; happy vs. sad, M = − 0.11 ± 0.25: beta = − 0.21 ± 0.22 se, t = − 0.96, p = 0.33, d 
= 0.35; sad vs. neutral: beta = − 0.13 ± 0.18 se, t = − 0.72, p = 0.5, d = 0.44). 

Finally, regarding arousal ratings, there was no interaction between the VFM and acoustic compensation (X2 = 2, p = 0.36, see 
Fig. 4C), confirming the non-specificity of the impact of the VFM on arousal ratings. 

In sum, as was also the case for explicit detection, implicit detection abolished the impact of the VFM on valence and confidence 
ratings. Importantly, the disappearance of the effect in compensated trials was not trivially due to acoustic compensation somehow 
counterbalancing the vocal transformations: the fundamental frequency of modified voices in compensated trials still largely reflected 
the intended transposition in this subset of the data (see Fig. 4D). In compensated trials, the fundamental frequency of the manipulated 
voices in the happy VFM condition (z-scored values, M = 1.19 ± 0.06 SD) remained, as intended, significantly higher than the 
fundamental frequency of neutral voices (M = − 0.13 ± 0.19 SD, beta = 1.33 ± 0.05 se, t = 27, p < 0.001) and sad manipulated voices 
(M = − 1.08 ± 0.12 SD, beta = 2.3 ± 0.06 se, t = 40, p < 0.001), and the fundamental frequency of the manipulated voices in the sad 
VFM condition remained significantly lower than the fundamental frequency of neutral voices (beta = − 0.95 ± 0.05 se, t = 19, p <
0.001). This was similar to the pattern observed in non-compensated trials: the fundamental frequency of the manipulated voices in the 
happy VFM condition was significantly higher than the fundamental frequency of neutral voices (beta = 1.15 ± 0.04 se, t = 31, p <
0.001), and sad manipulated voices (beta = 2.22 ± 0.03 se, t = 64, p < 0.001), and the fundamental frequency of the manipulated 
voices in the sad VFM condition remained significantly lower than the fundamental frequency of neutral voices (beta = 1.06 ± 0.04 se, 
t = 28, p < 0.001). Thus, the impact of the VFM was not abolished in compensators because acoustic compensation canceled our 
experimental manipulation. Rather, we suggest that acoustic compensation reflected an implicit detection that the affective signals 
perceived in the voice were not self-generated, leading to a dismissal of these signals during the construction of emotional judgement. 

3.6. Interaction between the vocal feedback effect and the background valence of the scenarios 

Finally, we explored whether the impact of the VFM varied depending on the background valence of the scenarios (Fig. 5). Given 

Fig. 5. Interaction between the impact of the VFM on valence ratings and the valence of the context. The percentage of negative responses given by 
each participant (as defined by a median split of valence ratings) was computed separately in each of the VFM conditions and Valence of the 
Scenario (green: happy, grey: neutral; blue: sad); * p < 0.05; ** p < 0.01. Comparisons across the positive/negative dimensions are not shown for 
clarity, but all of them were highly significant (p-values < 0.01). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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that we did not replicate the previous finding that a sad VFM should decrease valence ratings, we were particularly interested in 
whether the valence of the context may impact this effect (Aucouturier et al. 2016 employed a single, neutral text stimulus). 

To analyze whether the effect of the VFM depends on the valence of the scenario, we computed for each participant, scenario type 
(positive/negative) and VFM (happy, neutral, sad) the probability of giving a negative response (determined by a median split on the set 
of all valence ratings given by each participant). A linear mixed regression including the percentage of negative responses as a 
dependent variable, the valence of the scenario and the VFM as fixed factors, and participant as a random factor revealed, expectedly, a 
main effect of the valence of the scenario (X2 = 51.4, p < 0.001), but also an interaction between the VFM and the valence of the 
scenario (X2 = 9.87, p = 0.0072). Although for positive scenarios the sad VFM (M = 0.43 ± 0.2 SD) increased the percentage of 
negative responses compared to neutral trials (M = 0.32 ± 0.12 SD, beta = 0.13 ± 0.05 se, t = 2.75, p = 0.007, d = 0.71) and happy 
trials (M = 0.33 ± 0.17 SD, beta = 0.12 ± 0.04 se, t = 2.84, p = 0.005, d = 0.56), for negative scenarios (M = 0.67 ± 0.23 SD) it did not 
significantly impact the percentage of negative responses compared to neutral trials (M = 0.72 ± 0.12 SD, beta = − 0.05 ± 0.04 se, t =
− 1.1, p = 0.28, d = 0.26), and happy trials (M = 0.64 ± 0.17 SD, beta = 0.03 ± 0.037 se, t = − 0.89, p = 0.37, d = 0.16). Conversely, the 
happy effect decreased the percentage of negative responses compared to the neutral condition for negative scenarios (beta = − 0.08 ±
0.04 se, t = − 2.1, p = 0.04, d = 0.55), but not significantly so in positive scenarios (beta = 0.009 ± 0.04 se, t = − 0.2, p = 0.83, d =
0.08). In sum, the happy VFM mostly impacted judgements in negative scenarios, while the sad VFM mostly impacted judgements in 
positive scenarios. 

By contrast, the valence of the scenario did not interact with the effect of the VFM on confidence ratings, in a similar analysis 
involving the percentage of confident responses (no interaction between the VFM and the valence of the scenario, X2 = 1.1, p > 0.5, see 
Fig. S3). This speaks against the possibility that the effect of the VFM on confidence ratings was due to perceiving a mismatch between 
the valence of the scenario and the sad vocal feedback effect. 

4. Discussion 

Covertly introducing artificial affective signals in their voice impacted participants’ judgements about how they would feel in 
various emotional scenarios, but only when they did not detect the experimental manipulation. Such vocal signals are generally 
assumed to have evolved to serve a communicative function (Dezecache, Mercier, & Scott-Phillips, 2013; Fitch et al., 2002; Scherer, 
2003), but here we find that they also play a role for the emergence of conscious emotional states at the individual level. 

Applying the happy effect to participants’ voices lead them to report more positive emotions. This result is consistent with our 
initial predictions and with previous research (Aucouturier et al., 2016). By contrast, we did not observe an overall significant decrease 
in emotional valence in the sad condition. This contradicts our prediction that sad VFM should lead to a decrease in valence ratings, and 
no impact on arousal ratings (Aucouturier et al., 2016). Several factors may explain the fact that the sad VFM did not significantly 
impact valence ratings here. In particular, it appears that the impact of the sad VFM on emotional judgements was affected by 
contextual information, and was only manifest in positive scenarios, an issue to which we come back below. 

Regarding arousal, we observed a non-specific effect of the VFM, whereby both types of manipulated trials corresponded to higher 
ratings (Fig. 3). It is possible that, in the context of the present study (reading scenarios out loud), participants did not consistently 
associate higher or lower fundamental frequency to arousal. This would be consistent with the fact that, contrary to valence, arousal 
ratings were not strongly associated with the fundamental frequency of participants voices in non-manipulated (neutral) trials (Fig. 2). 
Instead of an emotional effect, it may have been possible that this increase in arousal ratings reflects physiological arousal linked to the 
detection of a fundamental frequency mismatch in speech production, regardless of the direction of the change. However, the fact that 
neither explicit or implicit detection interacted with the increase of arousal makes this possibility unlikely in our view. 

The present findings partially replicate a previous study (Aucouturier et al., 2016), but also extend it in several ways, documenting 
complexities that have important theoretical and methodological implications. First, here we systematically varied the direction of 
manipulation of the participants’ voice within-subject, while the initial study employed a single manipulation which varied between- 
subjects. In this novel setting, the VFM is sometimes detected by the speakers, either implicitly or explicitly, which allowed us to 
examine the impact of the detection on the VFM effect. Crucially, we observed that the impact of vocal affective signals depended on 
these acoustic modifications being perceived as self-generated: although 65% of the participants remained unaware of the manipu-
lation, the substantial number of participants who detected the VFM showed no emotional effect at the group level. We also found that 
implicit detection that the vocal signal is not self-generated, as defined by acoustic compensation of the manipulation in the partic-
ipant’s non-modified voice, also led to a dismissal of the affective information it contained. 

Research has shown that perturbing speech can result in vocal compensation even when participants are not aware of the 
manipulation (Hafke, 2008; Jones & Munhall, 2000), and that this phenomenon is related to forward-models and self-identification 
(Max et al., 2003; Tian & Poeppel, 2015). In our initial study on the vocal feedback effect (Aucouturier et al., 2016), we did not 
observe any acoustic compensation. This is likely due to the fact that we used a continuous stimulation over a long period of time (12 
min), and did not change the directionality of the VFM. Here, by contrast, using conditions that most closely resemble the conditions 
used in speech perturbation studies (Hafke, 2008; Jones & Munhall, 2000; Max et al., 2003; Tian & Poeppel, 2015), we did find 
substantial acoustic compensation in a subset of our participants. Furthermore, we find that such implicit detection also removes the 
influence of affective vocal signals on emotional experience. Taken together with past research showing that acoustic compensation 
reflects the detection of a mismatch between the vocal feedback and internal predictions about the auditory consequences of planned 
articulation, and that this source monitoring process is linked to perceiving the vocal feedback as originating from the self or not (Jones 
& Munhall, 2000; Tian & Poeppel, 2015), our finding suggests that only those signals that are identified as originating from the self 
directly impact felt emotions. This indicates that the identification of bodily signals as originating from the self, potentially through a 
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mechanism of internal forward models, is crucial for them to influence emotional feelings. 
One possibility for future studies concerns the factors underlying the individual variability that we observed in detecting the VFM. 

Here, we did not find any strong association between levels of detection and individual variables such as gender (% of female explicit 
detectors: 37%; males: 32%), alexithymia (no differences between scores on the TAS scale between detectors and non-detectors, t(46) 
= − 0.43, p = 0.7) or anhedonia (no differences between scores on the TAS scale between detectors and non-detectors, t(46) = 0.12, p 
= 0.9). Further research could further elucidate if there are other individual traits associated with detecting versus assimilating vocal 
feedback manipulations. We did, however, observe a correlation between alexithymia and the impact of the VFM on emotions (see 
Fig. S4). This effect is in line with studies reporting differences in the extent to which individuals are able to monitor their own 
interoceptive and bodily responses (Critchley & Garfinkel, 2017; Laird & Lacasse, 2014), but would have to be confirmed in a bigger 
sample of participants. 

We also observed that the background valence of the scenarios interacted with the VFM emotional effect, with the happy VFM 
mostly impacting negative scenarios, and the sad VFM mostly impacting positive scenarios. Several alternative interpretations can be 
proposed to account for this observation. First, it is important to note that although we labeled our effects happy and sad based on 
previous research on vocal affects (Aucouturier et al., 2016; Scherer, 2003), it is likely that the acoustic signals that we introduced here 
can actually be interpreted quite differently depending on the context. For instance, neutral states of low arousal such as boredom have 
also been associated with lower fundamental frequency, while highly negative states of activation such as anger tend to be associated 
with a higher fundamental frequency (Scherer, 2003). Thus, one possibility is that the “happy” and “sad” effects actually lead to 
different inferences depending on the emotion that is afforded by a given scenario. Alternatively, given that we find that the happy VFM 
mostly impacts valence judgements in negative situations, while the sad VFM mostly impacts valence judgements in positive situations, 
it may be that congruent VFM (happy on happy, sad on sad) does not warrant an additive effect (for instance, because vocal tone is not 
informative or surprising in that context), while the same transformations carries more affective information in incongruent situations. 
The present experiment was not specifically designed to examine these interactions, so follow-up experiments that manipulate vocal 
signals and situational factors (i.e., whether the scenario depicts a scene that primarily affords joy, weariness, shame, …) orthogonally 
are required to better understand how the contextual information and vocal signals are integrated to give rise to emotions. Regardless 
of the precise mechanisms that are involved in these interactions, the present results suggest that, like the interpretation of emotional 
displays of others (Crivelli & Fridlund, 2018; Wharton, 2009), the interpretation of self-generated signals is subject to an inferential 
process that integrates contextual cues. This would be consistent with theoretical frameworks proposing that emotional feelings result 
from integrative inferential processes that integrate bodily signals with other types of information such as episodic and semantic 
memories (Barrett, 2017; LeDoux & Brown, 2017; Schachter & Singer, 1962). 

Another novel aspect of our results is that vocal feedback not only impacted emotional self-reports, but also, how confident par-
ticipants were that they would feel this way. In neutral trials, we found a lower fundamental frequency in trials where participants 
provided lower confidence ratings (see Fig. 2C). Congruently, we also found that the sad VFM decreased confidence in emotional 
judgements, thereby suggesting that beyond impacting emotional judgements, the vocal feedback may also play a role in “meta- 
emotional” judgements (i.e., judgements about emotional judgements). This is consistent with reports showing that confidence in 
perceptual judgements can be impacted by arousal (Allen et al., 2016), and calls for the development of embodied models of meta-
cognition. It would be especially interesting to test whether a similar vocal feedback effect extends to general epistemic judgements, e. 
g. using feedback with modified fundamental frequency to influence a participant’s judgements of confidence in non-emotional tasks, 
such as how certain they are that they see a certain stimulus in a noisy visual search task (see also Goupil, Ponsot, Richardson, Reyes & 
Aucouturier, 2021). 

Our findings have several methodological implications. We have developed a paradigm that allows manipulating participants’ 
vocal feedback in a within subject design, a methodological improvement compared to our previous study (Aucouturier et al., 2016). 
This will enable further investigations, in particular to study the neural underpinnings of this vocal feedback emotional effect using 
traditional neuroimaging block paradigms. Our findings also delineate the conditions in which covertly manipulated vocal feedback 
can impact speakers’ emotions: the emotional effect is present only when participants identify the vocal feedback as self-generated. We 
also observed that the background valence of the context substantially impacts the emotional effect. These things combined have 
implications for developing vocal feedback applications for clinical practice, like potential non-pharmacological treatments for post- 
traumatic stress disorder or preoperative anxiety (Guerrier et al., 2019; Scherer et al., 2013). 

5. Conclusions 

To conclude, the present study reveals that vocal self-perception plays a role in the emergence of emotional feelings, reflecting an 
inferential process integrating both the monitoring of physiological changes and the interpretation of contextual information. Our 
findings support theories that see perception and cognitive interpretation of bodily signals as central for the construction of idio-
syncratic emotional experiences (Barrett, 2017; Damasio & Carvalho, 2013), and suggest that, beyond interoception, exteroception of 
self-originated signals also plays a substantial role. 
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